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Abstract 

Our 599 project is focused on developing reinforcement learning based agents to play a single-
player, 2D platformer, pre-existing game named ‘Zed’. ‘Zed’ is a goal-based video game, where 
the agent has to start at one point, and to complete the level, must reach the end while collecting 
coins and avoiding obstacles. Our project focuses on learning, based on agent’s actions and we 
implemented Reinforcement learning with an Advantage Actor-Critic Model to make our agent 
make its own decisions. While this can be taken forward for more levels of this game and even 
for multi-player games, as our Future Scope will describe, we have currently succeeded in training 
our agent for the first level of the game. To calculate an apt reward function, we have used a 
combination of four indicators that show the success-failure level of the agent. 

Background and Overview 

‘Platformers’ or ‘platform games’ are games that mainly revolve around a character controlled 
by the player, which runs and jumps to avoid obstacles and/or to defeat enemies. Platformers 
are often classified as a subgenre of action games, and is considered to be one of the first game 
genres [1]. The game we have chosen for our project is a 2D platformer game, with a single agent 
that we will apply two state-of-the-art Deep Reinforcement learning strategies on. This project is 
mainly divided in three parts - determining the correct reward function for our game, applying 
Deep Q-Network to the agent, and finally applying an Advantage Actor-Critic (A2C) Model to train 
the agent, and comparing these two Reinforcement learning techniques, to see which one fits 
our use case better. 

Considering the complex nature of 2D platformer games, Deep Reinforcement learning strategies 
were chosen to model the agent of ‘Zed’, our game. Two well known types of learning strategies, 
Deep Q-Learning and Advantage Actor-Critic Model were explored in modeling the main AI. Both 
of these methods will be explained in detail in our Methodology subsection. When dealing with 
Deep Reinforcement models, representation of the state of the game with which the models 
train, plays an important role. The game state is expected to encapsulate the spatial and temporal 
features. The spatial features include the player, resource, and enemy locations. The temporal 
features include the resource depletion, game score, player health, allies alive etc. Typically, a 
RGB snapshot of the game at a certain instant in the game is fed as the input to the models.  

Overview of the Game Environment 

The game we have chosen to train with Deep Reinforcement learning is called ‘Zed’ [2]. Zed is a 
2D platformer game owned by MiniClip, the world’s largest privately owned gaming website. It 
is a single player game consisting of ten levels, with increasing levels of difficulty. Our project is 
focused on Level 1. Zed was near-perfect for our project due to the tasks contained in the game, 
and some well-defined parameters, that would help form a strong reward function for our 
network. 

Zed is an Android. Zed’s mission is to collect three gold coins from the whole maze, while avoiding 
obstacles in order to reach a golden door. On reaching the golden door, Zed goes on to the next 
level of the game. At the end of successfully crossing all ten levels, Zed wins a Golden Suit. The 
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game quest begins in gold mines, and as levels progress, the mazes get more challenging. The 
level that our project focuses on contains several features, to guide us through training. Firstly, 
there are Blue Coins, which are similar to Gold Coins. The amount of blue coins collected 
contributes to the total score of that level. Then, there are Gold Coins. There are three of these, 
spaced out through the level. On collection of all three, the Golden door opens, and Zed has to 
navigate back to that door, and pass through it to complete the level. Level 1 gives Zed three 
lives. If Zed comes in contact with the fire-throwing dinosaur, Zed loses a life and has to start at 
the beginning. On losing all three lives, the player loses the level. Lastly, there is an energy level. 
In the beginning of the level, the energy bar is full. The longer Zed stays in that maze and stalls, 
the lesser the energy gets. If the energy level goes to zero, Zed loses a life.  

Our project uses these features to come up with a reward function to train Zed. All these features 
are needed for Zed to successfully pass this level. Hence, the points, the gold coins, the lives and 
the energy, all contribute to Zed’s reward policy, as explained in detail in our Methodology. 

Additionally, our code is set to read the game window’s coordinates assuming that it will open at 
the middle of the system’s screen. It thus grabs screenshots of the game window and a lot of 
other information using these coordinates.  

 

Figure 1 |  Zed[2] 

Related Work 

The game environment is a complex environment with many factors to consider. While we were 
sure of Reinforcement learning, we had multiple options to go with. Some of the options we 
considered, that is, some methods that exist to implement deep reinforcement learning are 
elaborated below. Using these and others as a reference, we decided to implement two 
strategies. 
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Double Q Learning 

In his paper Double Q-Learning, Hado van Hasselt explains how Q-Learning performs very poorly 

in some stochastic environments. He pointed out that the poor performance is caused by large 

overestimation of action values due to the use of Max Q(s’,a) in Q-learning. The proposed 

solution is to maintain two Q-value functions QA and QB, each one gets an update from the other 

for the next state. The update consists of finding the action a* that maximises QA in the next 

state (Q(s’, a*) = Max Q(s’, a)), then use a* to get the value of QB(s’, a*) in order to update QA(s, 

a) [3]. 

REINFORCE: Policy Gradients 

The DQN based solution basically implements the Q-Learning algorithm that aims to learn the 

values of actions in a particular state and then an action is selected based on their estimated 

action values. Unlike Q-Learning, Policy Gradients (PG) based solutions attempt to learn a 

parameterized policy that can select actions without consulting a value function estimate. A value 

function may still be used to learn the policy parameter, but is not required for action selection. 

The REINFORCE algorithm is a Monte Carlo based policy gradient method to learn the policy 

parameter based on the gradient of the reward measure with respect to the policy parameters. 

The main idea is that at each increment of the policy parameters, the update is proportional to 

the product of a return G , includes rewards from time t until the episode ends, and a vector, the 

gradient of the probability of taking the action actually taken divided by the probability of taking 

that action. The update causes the parameter to move the most in directions that favor actions 

that yield the highest return [4]. 

Dueling DQN 

(Wang et al.) presents the novel dueling architecture which explicitly separates the 

representation of state values and state-dependent action advantages via two separate streams. 

The key motivation behind this architecture is that for some games, it is unnecessary to know the 

value of each action at every timestep. The authors give an example of the Atari game Enduro, 

where it is not necessary to know which action to take until collision is imminent. By explicitly 

separating two estimators, the dueling architecture can learn which states are (or are not) 

valuable, without having to learn the effect of each action for each state. Like the Enduro 

example, this architecture becomes especially more relevant in tasks where actions might not 

always affect the environment in meaningful ways [5]. 
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Methodology 

1. Reward Function 

One of the key pieces of information that plays a vital role in developing a good model to learn 
the game is the reward function that the agent aims to optimize. Analyzing sparse rewards after 
every game does not capture the intermediate rewards at various instances in a game. Thus, we 
must develop some function to evaluate the state of the game at each time step. 

To better quantify the state of the game, we introduce the notion of an intermediary reward, 
which is computed at every time step and is used by the model to critique its policies [6]. Our 
reward function was a combination of several features that indicated the player’s success at each 
instant. The factors are as follows: 

● Blue coins collected (BlC) 

There were a set of blue coins along the whole maze, at the end of the level, the number 
of blue coins got added to the total score of that level. We used Python’s ‘Pytesseract’ 
library and performed Optical Character Recognition to parse the score. 

● Gold coins collected (GC) 

The gold coins collected were needed for the player to progress to the next level, the 
ultimate success of the player was calculated with the three gold coins obtained. 

● Lives remaining (L) 

Each player was given 3 lives at the beginning of a game, once the three lives were 
exhausted, the player lost the game. Lives could be exhausted by either coming in contact 
with the fire breathing dragon, or by reaching a zero energy level, due to staying in the 
game for a long period of time.  

● Energy level remaining (E) 

In each life the player starts with a full energy level, we quantify the full energy level as 
3000pts as that is the bonus added to the player score at the end of the level if the player 
has full energy. 

The energy bar changes the color shade as the energy goes on decreasing. Hence, we 
applied colour clustering to convert the energy bar into a number from 0 to 3000.This 
value is one of the inputs of the reward function. 

The factors weighed in as follows: 

 

RF = (1 - L) * Previous State + E + GC + BIC 
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2. Deep Q-Network 
 
𝑄-Learning, where 𝑄 stands for ‘Quality’, is a variation of reinforcement learning. In 𝑄 learning, 
there is an agent having states and corresponding actions. At any moment, the agent is in some 
feasible state. In the next time step, the state is transformed to another state(s) by performing 
some action. This action is accompanied either by reward or a punishment (negative reward). 
The goal of the agent is to maximize the reward gain [7]. Deep 𝑄 Network (DQN) is a form of 
reinforced learning in which the output of a CNN is not classification, but 𝑄 values (rewards) given 
to actions resulting from the input states. The DQN agent learns successful policies directly from 
high-dimensional sensory inputs using end-to-end reinforcement learning. Recently, DQN has 
proved successful in the challenging domain of classic Atari 2600 games [8]. 

Given below, is an explanation and a flowchart of how we have implemented Deep 𝑄-learning in 
this project. 

 

Figure 2 | Schematic illustration of the Deep 𝑄-Network 
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2.1 Experience Replay: 

 
We consider tasks in which the agent interacts with an environment through a sequence of 
observations, actions and rewards. The goal of the agent is to select actions in a fashion that 
maximizes cumulative future reward. More formally, we use a deep convolutional neural 
network to approximate the optimal action-value function 

 

                                                                                                                                                                         
[8] 

which is the maximum sum of rewards rt discounted by 𝝲 at each time-step t, achievable by a 
behavior policy 𝛑 = P(a|s), after making an observation (s) and taking an action (a). 
Reinforcement learning is known to be unstable or even to diverge when a nonlinear function 
approximator such as a neural network is used to represent the action-value (also known as 𝑄) 
Reinforcement learning is known to be unstable or even to diverge when a nonlinear function 
approximator such as a neural network is used to represent the action-value (also known as 𝑄) 
function. This instability has several causes: the correlations present in the sequence of 
observations, the fact that small updates to 𝑄 may significantly change the policy and therefore 
change the data distribution, and the correlations between the action-values (𝑄) and the target 
values 𝒓 + 𝞬 𝒎𝒂𝒙 𝑸(𝒔′, 𝒂′).We address the instabilities with a novel variant of 𝑄-learning, which 
uses two key ideas. First, we used a biologically inspired mechanism termed ‘Experience Replay’ 
that randomizes over the data, thereby removing correlations in the observation sequence and 
smoothing over changes in the data distribution. Second, we used an iterative update that adjusts 
the action-values (𝑄) towards target values that are only periodically updated, thereby reducing 
correlations with the target [8]. 

 

2.2 Epsilon-Greedy Strategy: 

Balancing the ratio of exploration/exploitation is a great challenge in reinforcement learning (RL) 
that has a great bias on learning time and the quality of learned policies. On the one hand, too 
much exploration prevents from maximizing the short-term reward because selected 
“exploration” actions may yield negative reward from the environment. But on the other hand, 
exploiting uncertain environment knowledge prevents from maximizing the long-term reward 
because selected actions may not be optimal [11]. To get this balance between exploitation and 
exploration, we use what is called an epsilon greedy strategy. With this strategy, we define an 
exploration rate ϵ that we initially set to 1. This exploration rate is the probability that our agent 
will explore the environment rather than exploit it. With ϵ=1, it is 100% certain that the agent 
will start out by exploring the environment. As the agent learns more about the environment, at 
the start of each new episode, ϵ will decay by some rate that we set so that the likelihood of 
exploration becomes less and less probable as the agent learns more and more about the 
environment. The agent will become “greedy” in terms of exploiting the environment once it has 
had the opportunity to explore and learn more about it. 
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                             𝑝 =  𝑚𝑖𝑛 +  (𝑒𝑝𝑠𝑖𝑙𝑜𝑛 +  𝑚𝑖𝑛)  ∗  𝑒(−𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒 ∗epoch) 
 

To determine whether the agent will choose exploration or exploitation at each time step, we 
generate a random number between 0and 1. If this number is greater than epsilon, then the 
agent will choose its next action via exploitation, i.e. it will choose the action with the highest Q-
value for its current state from the Q-table. Otherwise, its next action will be chosen via 
exploration, i.e. randomly choosing its action and exploring what happens in the environment 
[13]. 

2.3 Updating the Q-Value: 
 
The optimal action-value function obeys an important identity known as the Bellman equation. 
This is based on the following intuition: if the optimal value Q*(s’, a’) of the sequence s’ at the 
next time-step was known for all possible actions a’ ,then the optimal strategy is to select the 
action a’ maximizing the expected value of 𝒓 + 𝞬 𝒎𝒂𝒙 𝑸(𝒔′, 𝒂′). The basic idea behind our 
algorithm is to estimate the action-value function by using the Bellman equation as an iterative 
update [8]. 

 

                                                                                                                                 [13] 

 

 

We want to make the Q-value for the given state-action pair as close as we can to the right 
hand side of the Bellman equation so that the Q-value will eventually converge to the optimal 
Q-value q∗.This will happen over time by iteratively comparing the loss between the Q-value 
and the optimal Q-value for the given state-action pair and then updating the Q-value over and 
over again each time we encounter this same state-action pair to reduce the loss [13]. 

 

 

          [13]  

 

 

2.4 Learning rate: 
 
The learning rate 𝝰 is a number between 0 and 1, which can be thought of as how quickly the 
agent abandons the previous Q-value in the Q-table for a given state-action pair for the new Q-
value. So, for example, suppose we have a Q-value in the Q-table for some arbitrary state-action 
pair that the agent has experienced in a previous time step. Well, if the agent experiences that 
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same state-action pair at a later time step once it's learned more about the environment, the Q-
value will need to be updated to reflect the change in expectations the agent now has for the 
future returns. We don't want to just overwrite the old Q-value, but rather, we use the learning 
rate as a tool to determine how much information we keep about the previously computed Q-
value for the given state-action pair versus the new Q-value calculated for the same state-action 
pair at a later time step. The higher the learning rate, the more quickly the agent will adopt the 
new Q-value. For example, if the learning rate is 1, the estimate for the Q-value for a given state-
action pair would be the straight up newly calculated Q-value and would not consider previous 
Q-values that had been calculated for the given state-action pair at previous time steps [13]. 
 
2.5 Calculating new Q-value: 

 
Our new Q-value is equal to a weighted sum of our old value and the learned value. We multiply 
the old value by (1−α). Our learned value is the reward the agent receives from moving right from 
the starting state plus the discounted estimate of the optimal future Q-value for the next state-
action pair (s′,a′) at time t+1. This entire learned value is then multiplied by our learning rate. 

 

 

                                                                                                                                                                    [13] 

  

 

2.6  Training: 

● ‘Zed’ is kept running in a 800 x 600 window right in the center of the screen. 
● We utilized Python’s ‘ImageGrab’ library  that took screenshots of the game screen and 

fed it to MobileNet,  a CNN feature extractor. The feature-map extracted from MobileNet 
represents the current state of the game environment. 

● A dense neural network is used as a function-approximator that takes this state as an 
input and decides what action to take (output). This Deep 𝑄-Network takes one of four 
actions. [left, right, jump left, jump right] based on the Epsilon-Greedy strategy described 
above. Once an action was taken to interact with the game, an outcome was observed 
and a net reward was calculated based on the reward function described above. This 
information (reward) is fed back to the Deep Q-Network. The network adjusts its policy 
by updating the Q-values for the state-action pairs as described above, based on 
thousands of such interactions with the game. 

● Game is restarted every 100 steps to reset the environment. This goes on for 100 
games/epochs.  
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3. Advantage Actor Critic (A2C) and ACKTR Model 

The Actor-Critic algorithm uses two neural networks to approximate the policy. One is a neural 
network that approximates policy, and an object that selects an action using this network is called 
an Actor. This neural network that approximates the policy is called a policy network. The other 
is a neural network that judges whether the action selected by the Actor is good or bad behavior. 
Using this network, an object that predicts the value of the action that the Actor selected is called 
the value network. The value network approximates a Q function that directly represents the 
value of an action that an actor chooses in a specific state [9]. 

 

Figure 3 | Actor-Critic Model Flow Diagram 

The above diagram explains our actor-critic implementation for Zed online game. Before 
implementing different variants of actor-critic on Zed, we implemented ACKTR variant of actor-
critic on Atari games and Montezuma’s revenge - a similar game for Zed. Actor Critic using 
Kronecker-Factored Trust Region (ACKTR) uses scalable trust region natural gradient method for 
actor-critic methods. It is also a method that learns non-trivial tasks in continuous control as well 
as discrete control policies directly from raw pixel inputs. 

We used similar settings and environmental variables to tune our hyper-parameters for Zed 
actor-critic implementation based on openAI baselines for Actor Critic using Kronecker Factored 
approximation. As researched, we found out that ACKTR is a more sample efficient reinforcement 
learning algorithm than A2C - synchronous version of Asynchronous Advantage Actor-Critic 
method. 

The step model is updated using the following steps in actor-critic environment: 

1. It creates a runner object that handles the different environment state. 
2. The step model generates different experiences from the environment. 
3. Using these experiences, we train our model to capture the learning. 
4. When the AI runner agent takes a step or performs an action, each environment is 

updated with corresponding action or step. 
5. The resulting output is a batch of experiences which is further passed for gradient 

calculation. 
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6. The trained model and the batch output is used to calculate the gradient all at once.  
7. Simultaneously, the step model is updated with newly calculated weights. Below diagram 

explains this process with multiple worker agents: 

 

Figure 4 | Actor-Critic Lifecycle 

Advantages of using Actor-Critic Kronecker-Factored Trust Region: 

1. It is based on the underlying actor-critic approach. 
2. Provides capability of optimizing trust regions. 
3. Improves sample efficiency and is highly scalable. 
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Experiments & Results 

 

Figure 5 | Curve tracking the epsilon value                        Figure 6 | Curve tracking the 
throughout training                                                                 average score per move. Each point is                  
                                                                                                     the average score achieved per episode                 
                                                                                                     after the agent is run with 𝛆-greedy              
                                                                                                     policy for 100k frames 

 

 

Figure 7 | ACKTR agent in Atari game starts earning            Figure 8 | Curve tracking the average 
Rewards in a few hours compared to A2C agent.                  reward as number of episodes   
                                                                                                        increases to 700 for both the agents.        
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Figure 9 | Curve tracking the loss throughout the training                                                                                                               

We tested variants of actor-critic on Atari game Montezuma’s Revenge and our game Zed, and 
we observed 2- to 3-fold improvements in sample efficiency on average compared with a first-
order gradient method (A2C) and the traditional deep Q approach. Due to the scalability of the 
ACKTR algorithm, we could train several non-trivial tasks in continuous control directly from raw 
pixel observation space. 

Future Scope 

This report outlines and summarizes the two Deep Reinforcement Learning techniques that we 

have applied for 2D platformer game agent training. In our project, we have used Deep Q-

learning and Advantage Actor Critic (A2C) Model to train Zed. Some improvements that could be 

applied to this project, and some future scopes are that we could use Deep reinforcement 

learning techniques for multi-agent 2D platformer gaming environments.  

 

We’ve observed that in applied RL settings, the question of whether it makes sense to use multi-

agent algorithms often comes up. Compared to training a single policy that issues all actions in 

the environment, multi-agent approaches can offer a more natural decomposition of the 

problem and potential for more scalable learning [10]. Multi-Agent reinforcement learning is an 

interesting challenge in the gaming industry. Moreover, multi-agent Reinforcement learning is 

not as challenging when the agents have to play against each other. Rather, when there are 

agents that help each other via Synchronization to reach the goal, that’s what poses a bigger 

hurdle. If we look at this issue on a broader scope, we can think of how it can help automate 

traffic congestion with automated vehicles. This problem would need different vehicles to 

communicate with each other, and if we can achieve that effectively in our project, its scope is 

limitless. So, as far as the scope of this project is concerned, we can build on our single agent 

Reinforcement learning techniques and use it for a game that has two or more agents, who work 
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with a synchronization network to communicate with each other and collaboratively, while 

keeping the others’ state in mind, reach a common goal. 
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